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Abstract
We study Hamiltonian walks (HWs) on Sierpinski and n-simplex fractals. Via
numerical analysis of exact recursion relations for the number of HWs we
calculate the connectivity constant ω and find the asymptotic behaviour of the
number of HWs. Depending on whether or not the polymer collapse transition
is possible on a studied lattice, different scaling relations for the number of
HWs are obtained. These relations are, in general, different from the well-
known form characteristic of homogeneous lattices which has thus far been
assumed to also hold for fractal lattices.

PACS numbers: 05.50.+q, 02.10.Ox, 05.45.Df

1. Introduction

Enumeration of Hamiltonian walks (HWs), i.e., self-avoiding walks (SAWs) that visit every
site of a given lattice, is a classic problem in graph theory, but it also has an important role in the
study of the configurational statistics of polymers. HWs are used to model collapsed polymers
[1], polymer melting [2, 3], as well as protein folding [4, 5]. The number of all possible HWs
on a lattice is related to the configurational entropy of a collapsed polymer system, and also to
the optimal solutions to the travelling salesman problem [6, 7]. Enumeration of HWs, closed or
open, is a difficult combinatorial problem, which has been exactly solved only for few lattices,
namely, the two-dimensional Manhattan oriented square lattice [8, 9], the two-dimensional
ice lattice [10], the two-dimensional hexagonal lattice [11, 12], the Sierpinski gasket fractal
[6] and the 4-simplex fractal [13]. The number of HWs has also been calculated numerically
for various lattices by means of direct enumeration [14, 15], transfer matrix methods [16–18]
and Monte Carlo estimates [19, 20]. The field theory representation for this problem was
introduced in [21], and further developed in [22, 23].
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The purpose of this paper is to understand the topological properties of Hamiltonian walks
on several families of fractal lattices. In order to do this, we study the asymptotic behaviour
of the number of closed HWs CN for a large number of vertices N. This analysis yields the
values of the so-called connectivity constant ω which has the physical meaning of the average
number of steps available to the walker having already completed a large number of steps. It
also provides insight into the spatial distribution of walks present at large N; this can be related
to detailed studies of knot delocalization in [24].

The number CN is for homogeneous lattices with N � 1 expected to take the form

CN ∼ ωNµS
Nσ

Na. (1.1)

Here ω is the connectivity constant and the term with µS represents a surface correction
(µS < 1), with σ = (d − 1)/d (d being the dimensionality of the lattice). This differs from
the ordinary SAW case, where no surface term µS

Nσ

is expected, i.e., the number of SAWs
of length N behaves as µNNa for large N. Furthermore, the exponent a is universal in the
SAW case, i.e., it depends only on the dimensionality of the lattice, whereas for HWs it may
depend on other, not yet identified, characteristics of the lattice. To the lowest approximation
in equation (1.1) CN ∼ ωN , and the connectivity constant can be defined as

ln ω = lim
N→∞

ln CN

N
. (1.2)

For a better understanding of these problems it is helpful to study HWs on fractal lattices.
As was first recognized by Bradley [13], the self-similarity of fractal lattices is a useful tool
for the exact and computationally fast iterative generation and enumeration of all HWs on an
unlimitedly large corresponding fractal structure. In this paper, we extend Bradley’s algorithm
to two- and three-dimensional Sierpinski fractal families, as well as n-simplex fractals with
n > 4. We consider several families of fractals in order to compare the obtained results and
be able to draw more general conclusions about the character of the Hamiltonian walks on
different classes of lattices. In the case of the two-dimensional Sierpinski fractal family an
exact closed form result for the connectivity constant is obtained due to the simple form of
the recursion relations for the numbers of HWs. For the three-dimensional Sierpinski fractals
which can model physically more frequently encountered systems a numerical approach is
necessary. The study of asymptotics of the number of HWs shows that the surface term in
equation (1.1) only appears for fractals on which the collapse transition from the polymer coil
to the globule phase is possible. This is the same class of lattices for which delocalized HWs
dominate over localized ones for large N.

The paper is organized as follows. In section 2 we describe the two-dimensional Sierpinski
fractal family and obtain exact recursion relations for the number of HWs, as well as the closed
exact formula for ω. Recursion relations for HWs on three-dimensional Sierpinski fractals are
given and analysed in section 3. A similar method for analysing HWs on 5- and 6-simplex
lattices is presented in section 4. Finally, in section 5 we discuss all our findings and related
results obtained by other authors.

2. Hamiltonian walks on two-dimensional Sierpinski fractals

We begin by defining the two-dimensional (2D) Sierpinski fractal family. Each member of the
2D SF family (labelled by b) can be constructed recursively, starting with an equilateral triangle
that contains b2 smaller equilateral triangles (generator G2

1(b)). The subsequent fractal stages
are constructed self-similarly, by replacing each of the b(b + 1)/2 upward-oriented small
triangles of the initial generator by a new generator. To obtain the lth-stage fractal lattice
G2

l (b), which we shall call the lth-order generator, this process of construction has to be
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(a)

(b)

Figure 1. The (l + 1)th-order generators Gl+1(2) (a) and Gl+1(3) (b) for b = 2 and b = 3
two-dimensional Sierpinski fractals, with the possible closed Hamiltonian walks configurations
depicted. The small up-oriented triangles are the respective lth-order generators, and the lines that
traverse them represent the open Hamiltonian walks.

repeated l − 1 times, and the complete fractal is obtained in the limit l → ∞. It is easy to see
that, for any 2D SF, each closed HW on the (l + 1)th generator comprises HWs which enter
and exit lth-order generators. Let Cl be the number of closed HWs on the lth-order generator,
whereas hl and gl are the numbers of HWs which enter the lth-order generator at one vertex,
and leave it at the other, with or without visiting its third vertex, respectively. Then, it can be
shown that a simple relation

Cl+1 = Bhα
l g

β

l (2.1)

is valid for l � 1 (see appendix A). Here B is a constant that depends only on SF parameter b,
whereas exponents α and β are equal to

α = b + 1, β = (b + 1)(b − 2)

2
. (2.2)

For instance, the explicit form of the relation (2.1) for b = 2 is Cl+1 = h3
l and for

b = 3, Cl+1 = 3h4
l g

2
l , which is illustrated in figure 1. One can also show (appendix A)

that numbers hl and gl of open HWs obey the following closed set of recursion relations

hl+1 = Ahx
l g

y

l , gl+1 = Ahx−1
l g

y+1
l , (2.3)

for all l � 1, where A is again a constant, different for every b, and

x = b, y = b(b − 1)

2
. (2.4)

For b = 2 these relations have the form hl+1 = 2h2
l gl , gl+1 = 2hlg

2
l and for b = 3, hl+1 =

8h3
l g

3
l , gl+1 = 8h2

l g
4
l (see figure 2). From relations (2.3) it follows straightforwardly that

gl

hl

= g1

h1
= K, (2.5)

for any l � 1, so that from (2.1) and (2.2) one gets Cl+1 = BKβh
b(b+1)/2
l . Since the number

Nl of sites on the lth-order generator satisfies the recursion relation

Nl+1 = b(b + 1)

2
Nl − (b2 − 1), (2.6)

according to (1.2) it then follows that

ln ω = lim
l→∞

ln Cl+1

Nl+1
= lim

l→∞
ln hl

Nl

.
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Figure 2. Schematic representation of the recursion relation for the number of open Hamiltonian
walks (2.3) of h-type on b = 3 two-dimensional Sierpinski fractal structures.

Table 1. Values of the number A of Hamiltonian configurations relevant for the recursion relations
(2.3), numbers h1 and g1 of open HWs on the generators of two-dimensional Sierpinski fractals,
connectivity constant ω for HWs, and connectivity constant µ for SAWs (obtained via RG method—
µRG and numerically estimated µnum in [28]), for 2 � b � 8.

b A h1 g1 ω µRG(µnum)

2 2 2 3 1.317 98 2.288 (2.282 ± 0.007)

3 8 10 11 1.391 57 2.491 (2.49 ± 0.02)

4 40 92 112 1.461 86 2.656 (2.686 ± 0.004)

5 360 1852 2286 1.521 55 2.791 (2.82 ± 0.01)

6 3872 78 032 94 696 1.568 95 2.904 (2.92 ± 0.02)

7 62 848 6 846 876 8 320 626 1.610 11 3.005 (2.99 ± 0.05)

8 1287 840 1255 156 712 1527 633 172 1.645 28 (3.13 ± 0.07)

On the other hand, from (2.3)–(2.5) one has hl+1 = AKyh
b(b+1)/2
l , i.e., ln hl satisfies the

difference equation ln hl+1 = ln AKy + b(b+1)

2 ln hl , whose solution is

ln hl+1 = 1 − [b(b + 1)/2]l

1 − [b(b + 1)/2]
ln(AKy) +

(
b(b + 1)

2

)l

ln h1. (2.7)

From this equation, together with the explicit expression for the number of sites

Nl+1 = b + 4

b + 2

(
b(b + 1)

2

)l+1

+ 2
b + 1

b + 2
, (2.8)

which follows directly from relation (2.6), one can derive the general form

ω = A
4

b(b+4)(b2−1) h
4

b(b+1)(b+4)

1 g
2

(b+1)(b+4)

1 (2.9)

of the connectivity constant (1.2) for HWs on two-dimensional SFs. Consequently, in order
to calculate ω for any particular 2D SF, one should find the numbers h1 and g1 of open HWs
on the generator, and the number A of all Hamiltonian configurations which are relevant for
recursion relations (2.3). In table 1 we present these numbers, together with the values of ω, for
2 � b � 8. As one can see, for b = 2 and b = 3 the numbers g1, h1 and A are small and can be
directly enumerated, whereas for larger values of b they quickly increase, so that enumeration
should be computerized (calculation of the numbers A, g1 and h1 required 13 min for b = 7
case, and about 100 h for b = 8, both on a computer with a processor MIPS R10000, Rev 2.6 on
180 MHz). One should mention that the connectivity constant for the Sierpinski gasket (b = 2)

has already been calculated in a different way by Bradley [6].
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Combining equations (2.7)–(2.9) it is not difficult to see that hl = GωNl , where G depends
only on b, and correspondingly Cl ∼ ωNl . Comparing with (1.1) one can conclude that neither
surface nor power correction terms are present in the scaling form for the number of closed
HWs on two-dimensional Sierpinski fractals.

2.1. Comparison with the self-avoiding walk case

It is interesting to compare the value of the connectivity constant obtained for the case of
Hamiltonian walks to that corresponding to all possible self-avoiding configurations on 2D
SFs. Our algorithm for enumerating HWs is easily adjusted for that purpose. By means of
an exact renormalization group (RG) approach [25, 26], these configurations can be used for
calculating the connectivity constant µ for ordinary SAWs, which was done earlier only for
the b = 2 case [26]. Here we extend an exact RG calculation of the connectivity constant µ

for any b.
The connectivity constant µ for the SAW model is equal to µ = limN→∞(cN+1/cN) =

limN→∞(pN+1/pN), where cN (pN) is the average number of distinct open (closed) n-step
SAWs. In order to calculate µ within the exact RG approach, one should introduce two
generating functions B(l) and B

(l)
1 ,

B(l) =
∑
N

B(l)
N xN, B

(l)
1 =

∑
N

B(l)
1,NxN,

where x is the statistical weight of each step of the SAW (fugacity), whereas B(l)
N (B(l)

1,N ) is the
number of SAWs which enter the lth-order generator G2

l (b) at one vertex, and leave it at the
second, without (with) visiting the third one. For every 2D SF lattice functions B and B1 obey
recursion relations of the following form,

B(l+1) =
∑
i,j

fi,j (b)(B(l))i
(
B

(l)
1

)j
, B

(l+1)
1 =

∑
i,j

gi,j (b)(B(l))i
(
B

(l)
1

)j
, (2.10)

where fi,j (b) and gi,j (b) are coefficients that do not depend on l, but do depend on the fractal
parameter b. The initial conditions are B(0) = x, B

(0)
1 = x2 and the connectivity constant µ is

equal to 1/x∗, where x∗ is the value of the fugacity for which one approaches the fixed point
(B∗, B∗

1 ) of (2.10), after a large (infinite) number of iterations.
The explicit RG recursion relations for 2D SFs with b = 2 are

B ′ = B2 + B3 + 2BB1 + 2B2B1 + B2
1 , B ′

1 = B2B1 + 2BB2
1

and for b = 3,

B ′ = B3 + 3B4 + B5 + 2B6 + 3B2B1 + 12B3B1 + 4B4B1 + 8B5B1 + 3BB2
1 + 16B2B2

1

+ 5B3B2
1 + 8B4B2

1 + B3
1 + 8BB3

1 + 2B2B3
1 + B4

1

B ′
1 = B4B1 + 2B5B1 + 4B3B2

1 + 8B4B2
1 + 5B2B3

1 + 8B3B3
1 + 2BB4

1

whereas relations for b = 4 and 5 are given in appendix B. For b = 6 and 7 RG relations are
too cumbersome to be quoted here, but they are available upon request. Underlined terms in
quoted RG relations correspond to the Hamiltonian configurations, as one can check by direct
comparison with relations (2.3); replacing gl and hl in (2.3) by B and B1, respectively, one
obtains underlined terms in the RG relations (values of coefficient A are given in table 1). It
is obvious that for larger b values the number of SAW configurations is much larger than the
number of Hamiltonian configurations, and for that reason we were not able to enumerate all
SAW configurations on 2D SF beyond b = 7.
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g h i j

Figure 3. Examples of four possible types of open HWs on G3
1(2). Vertices not visited by the

Hamiltonian walker are encircled.

For all b considered here recursive relations (2.10) have only one nontrivial fixed point
(B∗

b , 0), where B∗
b lies in the interval 0 < B∗

b < 1. One can check that by setting B1 = 0 in
(2.10) RG equations used in [27] for calculating critical exponent ν (connected with the mean
end-to-end distance) for SAWs on 2D SFs are recovered. Of course, the SAW model treated in
[27] is slightly different (each unit triangle within the fractal can be traversed only along one
side) from the usual one, treated here, but both of them belong to the same universality class,
i.e., the critical exponent ν is equal for both considered SAW models. This is not the case with
the connectivity constant, which is a nonuniversal quantity, so an extra RG parameter B1 had
to be introduced.

The final RG results µRG for the SAW connectivity constant are given in the last column
of table 1, together with the corresponding values µnum obtained in [28] using a graph counting
technique. As one can expect, the connectivity constant µ for a SAW is larger than ω for HW
model, for every considered SF, since the physical meaning of the connectivity constant is the
average number of steps available to the walker after N steps completed, for large N. One can
also see that the values of µ obtained by two different methods for b = 4 and 5 are not in good
agreement. The RG method applied here is exact, implying that numerical estimations within
the graph counting technique used in [28] were not accurate enough.

3. Hamiltonian walks on three-dimensional Sierpinski fractals

We proceed by analysing the properties of HWs on the three-dimensional (3D) SF family. A
3D SF can be constructed recursively as in the 2D case, the only difference being that the
generator G3

1(b) of the fractal with the parameter b is no longer a triangle, but a tetrahedron
that contains b(b + 1)(b + 2)/6 upward-oriented smaller tetrahedrons. Consequently, one
should observe four types of open HWs that traverse the lth-order generator in order to obtain
the overall number of closed HWs on 3D SF. The first three types are HWs which enter the
generator at one vertex and leave it at another, meanwhile

• visiting the third, but not the fourth vertex (g-type),
• visiting both the third and the fourth vertex (h-type),
• visiting neither the third nor the fourth vertex (i-type).

HWs of the fourth possible type (j -type) consist of two self-avoiding branches, and correspond
to the walks that enter the generator and leave it without visiting the remaining two vertices,
then, after visiting other parts of the lattice, enter the same generator again at the third corner
vertex and finally leave it at the fourth corner vertex. Examples of these types of walks are
sketched in figure 3. In principle, it is possible to establish a closed set of recursion relations
for the numbers gl, hl, il and jl of the corresponding walks for any 3D SF in the following
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form,

gl+1 =
∑
n,m,k

G(n,m, k)gn
l h

m
l ikl j

b(b+1)(b+2)

6 −(n+m+k)

l ,

hl+1 =
∑
n,m,k

H(n,m, k)gn
l h

m
l ikl j

b(b+1)(b+2)

6 −(n+m+k)

l ,

(3.1)
il+1 =

∑
n,m,k

I(n,m, k)gn
l h

m
l ikl j

b(b+1)(b+2)

6 −(n+m+k)

l ,

jl+1 =
∑
n,m,k

J (n,m, k)gn
l h

m
l ikl j

b(b+1)(b+2)

6 −(n+m+k)

l ,

whereG(n,m, k),H(n,m, k), I(n,m, k) andJ (n,m, k) are the numbers of open Hamiltonian
configurations of the corresponding types, with n branches of g-type, m branches of h-type,
k branches of i-type, and [b(b + 1)(b + 2)/6 − (n + m + k)] branches of j -type. The number
Cl+1 of all closed HWs within the (l + 1)th-order generator for any b is equal to

Cl+1 =
∑
n,m,k

B(n,m, k)gn
l h

m
l ikl j

b(b+1)(b+2)

6 −(n+m+k)

l ,

where B(n,m, k) is the number of all closed Hamiltonian configurations with n branches of
g-type, m branches of h-type, k branches of i-type, and [b(b + 1)(b + 2)/6 − (n + m + k)]
branches of j -type. As one can see, the recursion relations (3.1) for the number of
open HWs on 3D Sierpinski fractals are much more complicated than the corresponding
equations (2.3) for 2D SFs. Consequently, it is not possible to find an explicit expression,
similar to (2.9), for the connectivity constant ω. Instead, one should perform a numerical
analysis of the recursion relations (3.1) in order to find the value of ω. We shall demonstrate
the method on the particular case of the b = 2 fractal.

By computer enumeration of the possible HW configurations within the (l + 1)th-order
generator G3

l+1(2) of the b = 2 3D Sierpinski fractal, we found the following recursion
relations,

g′ = 6g2j 2 + 4g3j + 2g4 + 12ij 2h + 24igjh + 24ig2h + 8i2h2, (3.2)

h′ = 24j 2hg + 16h2ij + 16hg3 + 32h2gi + 24g2hj, (3.3)

i ′ = 12igj 2 + 12ig2j + 8ig3 + 8i2jh + 16i2gh, (3.4)

j ′ = 8i2h2 + 48igjh + 22j 4 + 2g4 + 8g3j + 24ig2h, (3.5)

where we have used the prime symbol as a superscript for the numbers of HWs on the (l +1)th-
order generator G3

l+1(2) and no indices for the lth-order numbers. From the definition (1.2) of
the connectivity constant and the formula for the number Cl+1 of closed HWs within G3

l+1(2),

Cl+1 = 16g2
l h

2
l , (3.6)

it then follows that

ln ω = lim
l→∞

ln Cl+1

Nl+1
= 1

2
lim
l→∞

ln gl

Nl

+
1

2
lim
l→∞

ln hl

Nl

, (3.7)

where Nl = 2(4l + 1) is the number of sites in G3
l (2). On the other hand, from the recursion

relation (3.2) for the numbers gl one obtains

lim
l→∞

ln gl+1

Nl+1
= 1

2
lim
l→∞

ln gl

Nl

+
1

2
lim
l→∞

ln jl

Nl

+
1

2
lim
l→∞

1

4l+1
ln

(
6 + 4xl + 2x2

l + 24ylzl +
12ylzl

x2
l

+
24ylzl

xl

+
8y2

l z
2
l

x2
l

)
(3.8)
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where xl = gl/jl, yl = hl/jl and zl = il/jl . In a similar way, from (3.3) it follows that

lim
l→∞

ln hl+1

Nl+1
= 1

4
lim
l→∞

ln hl

Nl

+
1

4
lim
l→∞

ln gl

Nl

+
1

2
lim
l→∞

ln jl

Nl

+
1

2
lim
l→∞

1

4l+1
ln 8

(
3 + 3xl + 2x2

l + 4ylzl +
2ylzl

xl

)
. (3.9)

The new variables xl, yl and zl fulfil recursion relations which are easy to deduce from their
definitions and equations (3.2)–(3.5), and are not difficult to iterate (starting with initial values
x1 = 11

14 , y1 = 1 and z1 = 4
7 , following from the numbers g1 = 88, h1 = 112, i1 = 64

and j1 = 112, found by direct computer enumeration of the corresponding HWs within the
generator G3

1(2)). One quickly finds that xl , yl and zl tend to zero, and zl � xl � yl, x
2
l ∼ ylzl

for large l, meaning that the last terms on the right-hand side of equations (3.8) and (3.9) tend
to zero. It is then straightforward to see that from (3.8) and (3.9) it follows that

lim
l→∞

ln gl

Nl

= lim
l→∞

ln hl

Nl

= lim
l→∞

ln jl

Nl

,

and, according to (3.7), one finds

ln ω = lim
l→∞

ln jl

Nl

. (3.10)

Instead of the number jl , which rapidly grows with l, it is convenient to introduce yet another
variable

ul = ln jl

4l
− ln 22

3

(
1

4
− 1

4l

)
, (3.11)

which has the initial value u1 = ln 112
4 . Numerically iterating its recursion relation, together

with those for xl , yl and zl , one can show that ul tends to 1.250 778 8499 . . . when l → ∞.
Finally, since ln ω = 1

2 liml→∞ ul + 1
24 ln 22, the connectivity constant for the b = 2 3D

Sierpinski fractal is equal to ω = 2.125 87 . . . .

In order to find the first correction to the leading-order behaviour of Cl one needs to know
the asymptotic behaviour of the numbers xl, yl and jl , according to the formula

ln Cl+1

Nl+1
= ln 16

Nl+1
+ 2

ln xl

Nl+1
+ 2

ln yl

Nl+1
+ 4

ln jl

Nl+1
, (3.12)

following from (3.6) and the definition of xl and yl . Keeping only the leading-order terms in
the recursion relation for xl one gets xl+1 ≈ constx2

l , which means that xl behaves as

xl ∼ λ2l

(3.13)

for large l. Numerically iterating the recursion relations for xl, yl and zl one finds
λ = liml→∞ ln xl

2l = 0.9055 . . .. It then follows that yl+1 ≈ 12
11xlyl, zl+1 ≈ 6

11xlzl , implying that
yl

zl
∼ 2l , which, together with the numerically established relation x2

l ∼ ylzl , gives

zl ∼ 2−l/2xl ∼ 2−l/2λ2l

, yl ∼ 2l/2λ2l

. (3.14)

On the other hand, from the definition of ul(3.11) and the corresponding recursion relation it
follows that

ln jl

4l
= u1 +

l−1∑
k=1

1

4k+1
ln

(
1 +

4

11
x3

k +
1

11
x4

k +
24

11
xkykzk +

12

11
x2

k ykzk +
4

11
y2

k z
2
k

)

+
ln 22

3

(
1

4
− 1

4l

)
.
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Then, using (3.10), one can write
ln jl

4l
= 2 ln ω − 1

4l

ln 22

3

−
∞∑
k=l

1

4k+1
ln

(
1 +

4

11
x3

k +
1

11
x4

k +
24

11
xkykzk +

12

11
x2

k ykzk +
4

11
yk

2z2
k

)
,

and consequently, since
∞∑
k=l

1

4k+1
ln

(
1 +

4

11
x3

k +
1

11
x4

k +
24

11
xkykzk +

12

11
x2

k ykzk +
4

11
y2

k z
2
k

)

� ln
104

11

∞∑
k=l

1

4k+1
= 1

3

1

4l
ln

104

11
,

which is not difficult to show, one obtains

ln jl = 2 ∗ 4l ln ω + O(1). (3.15)

Finally, from (3.12)–(3.15) it follows that

ln Cl = Nl ln ω + N
1/2
l ln λ

√
2 + 1

2 ln Nl + O(1),

which means that the behaviour (1.1) of the number of HWs, expected for homogeneous
lattices, is also satisfied for this fractal lattice, with the following values of the exponents:

σ = 1
2 , a = 1

2 .

The number of all possible HW configurations within a generator of the 3D Sieprinski
fractal grows rapidly with b. In appendix C we give the corresponding recursion relations for
the numbers gl, hl, il and jl found for the b = 3 3D SF, together with their initial values, and
the formula for the number Cl+1 of closed HWs. The CPU time required for the enumeration
and classification of HW configurations was so long for the b = 3 case that we could not go
beyond it. However, the method used for b = 2 3D SF in principle could be applied for any
b with no qualitative difference. Analysing recursion relations given in appendix C in that
manner, for the b = 3 3D SF we found that the number Cl of closed HWs obeys a scaling form
similar to that of the b = 2 3D case with the following values for the connectivity constant ω

and exponents σ and a:

ω = 2.272 2364 . . . , σ = ln 3

ln 10
, a = 0.386 . . . .

4. Hamiltonian walks on n-simplex fractals

To complete our analysis of the nature of Hamiltonian walks on 2D and 3D Sierpinski fractal
lattices, we now turn to n-simplexes, which are in some ways a generalization of SFs for b = 2
in n − 1 dimensions. To obtain an n-simplex lattice [25] one starts with a complete graph of n
points and replaces each of these points by a new complete graph of n points. The subsequent
stages are constructed self-similarly, by repeating this procedure. After l such iterations one
obtains an n-simplex of order l, whereas the complete n-simplex lattice is obtained in the limit
l → ∞. It is trivial to see that the connectivity constant ω for HWs on 3-simplex lattice is
equal to 1, whereas Bradley found that ω = 1.399710 . . . for the 4-simplex [13]. In principle,
it is possible to establish an exact set of recursion relations for the numbers of suitably chosen
prerequisite HWs on any n-simplex, as Bradley did for n = 4. Here we will demonstrate the
method on n = 5 and n = 6 cases.
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C C C1,l ,l 3,l

C C1,l ,l2

2

(a)

(b)

Figure 4. Schematic representation of types of open Hamiltonian walks through a (a) 5-simplex
and (b) 6-simplex of order l.

4.1. 5-simplex

Any closed HW of order (l + 1) on this fractal can be decomposed into five open HWs through
5-simplices of order l. There are two possible types of these open HWs, as depicted in
figure 4(a). The first corresponds to walks which enter the simplex at one corner, visit all
vertices inside it, and leave it—we shall denote the number of these walks by C1,l . A walk of
the second type enters the simplex at one of its five corners, wanders around it visiting some
of the vertices inside it, leaves it through the second corner, and afterwards enters it again at
the third corner, visits all the remaining vertices, and finally leaves it—let the total number of
these walks on the lth-order 5-simplex be C2,l . The total number Cl+1 of closed HWs is equal
to

Cl+1 = 12C5
1,l + 30C4

1,lC2,l + 60C3
1,lC

2
2,l + 132C5

2,l (4.1)

which we found by computer enumeration, together with the recursion relations

C1,l+1 = 6C5
1,l + 30C4

1,lC2,l + 78C3
1,lC

2
2,l + 96C2

1,lC
3
2,l + 132C1,lC

4
2,l + 132C5

2,l ,
(4.2)

C2,l+1 = 2C5
1,l + 13C4

1,lC2,l + 32C3
1,lC

2
2,l + 88C2

1,lC
3
2,l + 220C1,lC

4
2,l + 186C5

2,l .

The initial values for these numbers are C1,1 = 6 and C2,1 = 2. From the recursion
relation (4.1) it follows that

ln Cl+1

5l+1
= ln C2,l

5l
+

1

5l+1

(
132 + 60x3

l + 30x4
l + 12x5

l

)
, (4.3)

where the new variable xl = C1,l/C2,l satisfies the recursion relation

xl+1 = 6
22 + 22xl + 16x2

l + 13x3
l + 5x4

l + x5
l

186 + 220xl + 88x2
l + 32x3

l + 13x4
l + 2x5

l

, (4.4)

obtained from (4.2). Numerically iterating this relation, starting with x1 = 3, we find that
xl → 0.802 318 837 . . . when l → ∞, and consequently, since Nl = 5l , it follows that

ln ω = lim
l→∞

ln Cl+1

5l+1
= lim

l→∞
ln C2,l

5l
+ lim

l→∞
1

5l+1
ln

(
1 +

5

11
x3

l +
5

22
x4

l +
1

11
x5

l

)
= lim

l→∞
ln C2,l

5l
.
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The last limiting value can be quickly calculated if we introduce the variable

yl = ln C2,l

5l
− ln 186

4

(
1

5
− 1

5l

)
− ln 2

5
,

which, according to (4.2), obeys the recursion relation

yl+1 = yl +
1

5l+1
ln

(
1 +

110

93
xl +

44

93
x2

l +
16

93
x3

l +
13

186
x4

l +
1

93
x5

l

)
, (4.5)

and has the initial value yl = 0. Then, iterating (4.5) simultaneously with (4.4) we find
yl → 0.141 065 489 481 . . . for large l, and finally, since ln ω = liml→∞ yl+ln 186/20 + ln 2/5,
we obtain ω = 1.717 769 . . . .

To examine the leading-order correction to the number of Hamiltonian walks on the 5-
simplex fractal, we note that for any k the quantity yl can be written as yl = yk +

∑l−1
m=k

(ym+1 − ym). Taking the l → ∞ limit and keeping k fixed in that equation, one obtains

ln ω = ln C2,k

5k
+

ln 186

4 · 5k
+

∞∑
m=k

1

5m+1
ln

(
1 +

110

93
xm +

44

93
x2

m +
16

93
x3

m +
13

186
x4

m +
1

93
x5

m

)
.

Since x1 = 3 and the array xm is monotonically decreasing, the sum on the right-hand side of
the above equation is bounded from above by

ln(21.72)

∞∑
m=k

1

5m+1
= ln(21.72)

1

5k+1

(
1 +

1

5
+ · · ·

)
= 1

4
ln(21.72)

1

5k
.

Therefore we can conclude that

ln C2,k = 5k ln ω + O(1) and ln C1,k = ln C2,k + ln xk = 5k ln ω + O(1). (4.6)

Finally, for the number Cl of closed HWs, from (4.3), we obtain the same behaviour:

ln Cl = 5l ln ω + O(1). (4.7)

Comparing with equation (1.1) we see that in the case of the 5-simplex fractal both the surface
and the power correction to the number of HWs are absent.

4.2. 6-simplex

In addition to the C1,l- and C2,l-type walks, already defined for the 5-simplex, one should
introduce another type of walks for complete enumeration of HWs on the 6-simplex lattice.
These walks enter the 6-simplex three times, as depicted in figure 4(b). Let us denote their
number on the 6-simplex of order l by C3,l . The total number Cl+1 of closed HWs within the
6-simplex of order (l + 1) is equal to

Cl+1 = 60C6
1,l + 360C5

1,lC2,l + 1170C4
1,lC

2
2,l + 1920C3

1,lC
3
2,l + 3960C2

1,lC
4
2,l

+ 7920C1,lC
5
2,l + 5580C6

2,l , (4.8)

as we found by computer enumeration. Numbers C1,l , C2,l and C3,l satisfy closed set of
recursion relations, which can be numerically analysed in a way similar to, although more
complicated than, that used in the case of the 5-simplex lattice (see appendix D). In contrast
to the 5-simplex case, where numbers C1,l , C2,l and Cl have the same asymptotic behaviour
(4.6) and (4.7), here we obtained

ln C1,l = 6l ln ω + 2l+1 ln λ + O(1), (4.9)

ln C2,l = 6l ln ω + 2l ln λ + O(1), (4.10)
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ln C3,l = 6l ln ω + O(1), (4.11)

with ω = 2.0550 . . . , λ = 0.9864 and

ln Cl = Nl ln ω + Nσ
l ln µS + O(1), (4.12)

with Nl = 6l , σ = ln 2/ ln 6 and µS = λ3. The surface correction to the number of HWs is
present here, but still there is no term proportional to ln Nl , which would imply the presence
of the power correction. The same conclusion was obtained by Bradley [13] for the 4-simplex
lattice, with σ = 1/2.

5. Discussion and conclusions

The values of the connectivity constant ω found by us, as well as some values previously found
by other authors [13] are depicted in figure 5(a), as functions of the coordination number3 z of
the lattice, together with the Flory [29] and Orland [21] approximations, and ω for hexagonal
[12], square [30], triangular [31] and cubic [15] lattices. One can clearly see that ω increases
with z, which is in accord with Flory ωF = (z − 1)/e and Orland et al ωO = z/e formulae,
but it is obvious that ω depends on other lattice properties too. Furthermore, all values of
ω lie between the values predicted by these two formulae, and it seems that these kinds
of approximations give satisfying results for the fractal lattices studied here. Based on the
information in this figure one may conclude that ωO and ωF are good upper and lower bounds
for fractal HW connectivity constants.

In figure 5(b) the connectivity constant ω for 2D SFs is presented as a function of the
reciprocal of the fractal scaling parameter b. It seems that for b → ∞ the connectivity constant
might approach its triangular lattice value. This is not surprising, since for b = ∞ the first step
of the construction of the corresponding 2D SF is already the wedge of the triangular lattice.
In the same limit, 3D SFs approach the corresponding three-dimensional Euclidean lattice, so
it would be useful to obtain recursion relations for HWs on these fractals for larger b, since
there are fewer results for more realistic three-dimensional lattices. This task requires faster
computers, as well as establishing a better algorithm for enumerating the HW configurations
within a generator of a fractal, which is something we are planning to do in the nearest future.

As for the correction to the leading-order asymptotic behaviour of the number of HWs, we
have shown that the surface correction µNσ

s appears for neither the two-dimensional Sierpinski
fractals nor for the 5-simplex lattice. In contrast, for both three-dimensional Sierpinski
fractals considered here, as well as for the 4-simplex [13] and the 6-simplex lattice, the surface
correction is present, with the value of the exponent σ = 1/df , where df is the fractal
dimension of the corresponding lattice4. This result is certainly not a simple generalization
of the formula proposed for the homogeneous lattices: σ = (d − 1)/d. This is actually not
surprising: the correction term µNσ

S in (1.1) was originally introduced in order to take into
account possible surface tension effects, since at low temperatures a SAW forms a compact
globule (see, for instance, [36]). The value σ = (d − 1)/d for homogeneous lattices then
follows from the fact that the surface of such a globule is proportional to N(d−1)/d . In the case
of fractal lattices it is, however, questionable whether such surface effects exist at all. For
instance, all sites of the b = 2 3D SF lie on the surface, which is not the case for the b = 3
3D SF, but for both lattices the number of HWs has the correction term µNσ

s . Or, in the case

3 The coordination number z (the average number of nearest neighbours per site) for the n-simplex lattice is equal to
n, whereas it can be shown that z = 6(b + 2)/(b + 4) for 2D SF with the scaling parameter b, z = 6 for b = 2 3D SF
and z = 6.75 for b = 3 3D SF.
4 Fractal dimension for 3D SF is df = ln(b(b + 1)(b + 2)/6)/ ln b, and for the n-simplex lattice df = ln n/ ln 2.
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Figure 5. (a) Connectivity constant ω for Hamiltonian walks on Sierpinski fractals (� for 2D SF,
and full triangles for 3D SF) and n-simplex lattices (♦) as functions of the coordination number z

together with previously found results for 4-simplex [13], hexagonal [12] (star), square [29] (�),
triangular [30] (�), and cubic [15] (full diamond) lattices, as well as Flory [28] and Orland [21]
approximations, ωF = (z − 1)/e and ωO = z/e, respectively. (b) Connectivity constant for 2D
SFs as a function of the reciprocal of the scaling parameter b, where line connecting triangles
serves merely as the guide to the eye. Open up-oriented triangle on vertical axes depicts the value
of ω for triangular lattice.

of an n-simplex lattice all sites have the same number n of neighbours, and one should not
expect any surface correction, but still, for some of them the correction µNσ

s was found. So, it

seems that the term µN
1/df

S , obtained for some of the studied fractals, does not originate from
the surface effects, which is also supported by the fact that N1/df is proportional to the mean
radius of the globule formed by a HW, and not to its surface.

It is interesting to note here that the existence of the term µN
1/df

S in the scaling form for
the number of HWs, coincides with the existence of the polymer coil to globule transition
on the corresponding lattice. As was shown earlier, a polymer chain in a solvent, modelled
by SAWs on the 2D Sierpinski fractals [27] and 5-simplex [32] can exist only in the swollen
phase; on the 3D Sierpinski fractals [33–35], 4-simplex [25] and 6-simplex [32] lattices, when
the temperature is lowered the polymer undergoes a collapse transition from an expanded state
to a globule state (compact or semi-compact [34]). Analysing the asymptotic behaviour of
different types of open HWs on fractals one can observe that the collapse transition exists on
lattices whose topology allows for the statistical domination of HWs which are not localized.
In particular, HWs on the 2D SG fractals cannot enter a generator of any order more than once,
i.e., all the walks are localized. On the 5-simplex fractal this is possible (see figure 4(a)), but
the number C1,l of localized HWs and the number C2,l of delocalized HWs (walks that enter
every lth-order 5-simplex twice) are of the same order (see (4.6), i.e., the delocalized HWs
do not dominate. On the other hand, the delocalized HWs on the 3D SG fractals (j -type,
see figure 3) and on the 6-simplex (C2,l- and C3,l-type, see figure 4(b)), as well as on the
4-simplex [13], are possible, and furthermore, the number of these walks is much larger than
the number of localized HWs (see sections 3 and 4.2). This observation strongly resembles
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the conclusion obtained in a series of recent papers [24] about the delocalization of knots
in the low-temperature globular phase. Although the term ‘delocalization’ was not used in
quite the same sense in these two contexts, it seems that the same effect is in question, and
this problem deserves further investigation.

Finally, the power dependence of the overall number CN of closed HWs on the number
of sites N of the lattice was found only for the 3D SFs. A more detailed inspection of the
calculation of the exponent a for these lattices reveals that

a = const lim
l→∞

ln hl

il

l
.

The numbers hl and il correspond to the localized open Hamiltonian configurations that visit
the maximal (4) and the minimal (2) number of vertices, respectively, within the generator
of order l (see figure 3). In the case of 2D SFs, numbers of open configurations visiting the
maximal or the minimal number of vertices were hl and gl , respectively, and it was shown
that the ratio hl/gl=const for every l. Consequently, liml→∞ ln(hl/il)/ l = 0, which may be
the formal explanation for the absence of the power correction to the number of HWs on a 2D
SF. On the other hand, on the n-simplex lattices only one type of localized HW configurations
is possible, so it appears that the power term in the scaling form for the number of HWs is
obtained on lattices where a larger number of different types of localized configurations is
possible.

In conclusion, we can say that the method of exact recursion relations turned out to be
very powerful for the generation and the enumeration of extremely long Hamiltonian walks on
the two- and three-dimensional Sierpinski and n-simplex fractals. Furthermore, it allows for
a detailed numerical analysis of HWs of different topologies. This enabled us to find various
scaling forms for the number of closed HWs on these lattices. In the case of two-dimensional
Sierpinski fractals, a closed-form expression is obtained for the connectivity constant. Very
interesting results were obtained for the three-dimensional Sierpinski fractals. This should be
utilized for attaining deeper insight into the realistic physical problems which can be modelled
by Hamiltonian walks.
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Appendix A. Recursion relations for HWs on 2D Sierpinski fractals

In this appendix, we present the derivation of relations (2.1) and (2.3) for open and closed
HWs on 2D SFs, for general b.

It is obvious that the number of closed HWs on the (l + 1)th-order generator is of the
form Cl+1 = ∑

i Bih
αi

l g
βi

l , where Bi is the number of all closed Hamiltonian configurations
consisting of αi steps of h-type and βi steps of g-type (‘step’ is here a part of HW that traverses
lth-order generator within the considered (l + 1)th-order generator). By definition, a closed
HW visits all sites of the (l + 1)th generator, consequently it traverses all b(b + 1)/2lth-order
generators within it, so that

αi + βi = b(b + 1)

2
. (A.1)
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h g

Figure A1. h- and g-type HWs on a G2
l+1 generator, which can be obtained from one another in a

unique way. These two walks differ only in the parts surrounded by circles.

On the other hand, every h-type step occupies all three vertices of the lth generator it traverses,
whereas a g-type step occupies only two vertices (the entering and the exiting one). This
means that the numbers αi and βi also have to satisfy the following equation,

2αi + βi = (b + 1)(b + 2)

2
, (A.2)

since the number of lth-order vertices inside the (l + 1)th generator is (b + 1)(b + 2)/2. The
system of equations (A.1) and (A.2) has a unique solution αi = b + 1, βi = (b + 1)(b − 2)/2
which completes the derivation of relation (2.1).

For open h-type HWs, in a similar way, we have hl+1 = ∑
i Aih

xi

l g
yi

l , where exponents
xi and yi satisfy the system xi + yi = b(b+1)

2 , 2xi + yi = (b+1)(b+2)

2 − 1, whose only solution
is xi = b, yi = b(b − 1)/2. At the same time, every g-type HW on a generator G2

l+1 can be
obtained from one and only one h-type HW (and vice versa), by substituting one h-step with a
g-step, as depicted in figure A1. This means that all of these walks have exactly (b−1)h-steps
and [b(b − 1)/2 + 1] g-steps, i.e. relations (2.3) are correct.

Appendix B. RG equations for the SAW model on a 2D SF

In this appendix, we give exact RG equations (2.10) for calculating the connectivity constant
for the ordinary SAW model on the b = 4 and the b = 5 two-dimensional Sierpinski
fractals. These equations were obtained via computer enumeration and classification of all
SAW configurations within the corresponding fractal generator. RG relations (2.10) for b = 6
and 7 were also found, but they are too cumbersome to be quoted here and they are available
upon request:

b = 4 :

B ′ = B4 + 6B5 + 6B6 + 9B7 + 9B8 + 9B9 + 4B10 + 4B3B1 + 30B4B1 + 36B5B1

+ 56B6B1 + 58B7B1 + 56B8B1 + 26B9B1 + 6B2B2
1 + 57B3B2

1 + 84B4B2
1

+ 134B5B2
1 + 143B6B2

1 + 128B7B2
1 + 56B8B2

1 + 4BB3
1 + 51B2B3

1 + 96B3B3
1

+ 156B4B3
1 + 168B5B3

1 + 128B6B3
1 + 40B7B3

1 + B4
1 + 21BB4

1 + 55B2B4
1

+ 93B3B4
1 + 94B4B4

1 + 48B5B4
1 + 3B5

1 + 14BB5
1 + 28B2B5

1

+ 20B3B5
1 + B6

1 + 4BB6
1

B ′
1 = B6B1 + 6B7B1 + 7B8B1 + 4B9B1 + 6B5B2

1 + 38B6B2
1 + 44B7B2

1 + 26B8B2
1

+ 14B4B3
1 + 92B5B3

1 + 102B6B3
1 + 56B7B3

1 + 16B3B4
1 + 106B4B4

1 + 104B5B4
1

+ 40B6B4
1 + 9B2B5

1 + 58B3B5
1 + 40B4B5

1 + 2BB6
1 + 12B2B6

1
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b = 5 :

B ′ = B5 + 10B6 + 20B7 + 30B8 + 54B9 + 68B10 + 98B11 + 94B12 + 86B13

+ 38B14 + 16B15 + 5B4B1 + 60B5B1 + 140B6B1 + 228B7B1 + 443B8B1

+ 586B9B1 + 867B10B1 + 854B11B1 + 786B12B1 + 348B13B1 + 140B14B1

+ 10B3B2
1 + 146B4B2

1 + 402B5B2
1 + 718B6B2

1 + 1521B7B2
1 + 2137B8B2

1

+ 3203B9B2
1 + 3240B10B2

1 + 2918B11B2
1 + 1268B12B2

1 + 458B13B2
1 + 10B2B3

1

+ 184B3B3
1 + 610B4B3

1 + 1218B5B3
1 + 2846B6B3

1 + 4316B7B3
1 + 6433B8B3

1

+ 6648B9B3
1 + 5630B10B3

1 + 2306B11B3
1 + 664B12B3

1 + 5BB4
1 + 126B2B4

1

+ 523B3B4
1 + 1209B4B4

1 + 3170B5B4
1 + 5307B6B4

1 + 7678B7B4
1 + 7960B8B4

1

+ 5960B9B4
1 + 2104B10B4

1 + 360B11B4
1 + B5

1 + 44BB5
1 + 249B2B5

1 + 710B3B5
1

+ 2159B4B5
1 + 4118B5B5

1 + 5604B6B5
1 + 5554B7B5

1 + 3292B8B5
1 + 776B9B5

1

+ 6B6
1 + 59BB6

1 + 234B2B6
1 + 891B3B6

1 + 2031B4B6
1 + 2479B5B6

1 + 2086B6B6
1

+ 744B7B6
1 + 5B7

1 + 36BB7
1 + 214B2B7

1 + 630B3B7
1 + 626B4B7

1 + 324B5B7
1

+ B8
1 + 28BB8

1 + 117B2B8
1 + 72B3B8

1 + 2B9
1 + 10BB9

1

B ′
1 = B8B1 + 12B9B1 + 39B10B1 + 48B11B1 + 60B12B1 + 34B13B1 + 16B14B1

+ 8B7B2
1 + 102B8B2

1 + 344B9B2
1 + 432B10B2

1 + 556B11B2
1 + 314B12B2

1

+ 140B13B2
1 + 27B6B3

1 + 366B7B3
1 + 1278B8B3

1 + 1616B9B3
1 + 2098B10B3

1

+ 1156B11B3
1 + 458B12B3

1 + 50B5B4
1 + 722B6B4

1 + 2600B7B4
1 + 3254B8B4

1

+ 4128B9B4
1 + 2128B10B4

1 + 664B11B4
1 + 55B4B5

1 + 852B5B5
1 + 3148B6B5

1

+ 3808B7B5
1 + 4474B8B5

1 + 1968B9B5
1 + 360B10B5

1 + 36B3B6
1 + 610B4B6

1

+ 2302B5B6
1 + 2590B6B6

1 + 2540B7B6
1 + 736B8B6

1 + 13B2B7
1 + 254B3B7

1

+ 981B4B7
1 + 948B5B7

1 + 592B6B7
1 + 2BB8

1 + 54B2B8
1 + 220B3B8

1

+ 144B4B8
1 + 4BB9

1 + 20B2B9
1 . (B.1)

Appendix C. Recursion relations for HWs within the b = 3 3D SF

Here we give the recursion relations for the numbers gl, hl , il and jl of open HW configurations
within the b = 3 3D SF, obtained via computer enumeration. With symbols gl+1,
hl+1, il+1, jl+1, gl, hl, jl and il abbreviated to g′, h′, i ′, j ′, g, h, i and j , respectively, these
relations have the following form:

g′ = 6120i2g3j 5 + 3312i2g4j 4 + 8176i2g5j 3 + 5068i2g6j 2 + 2964i2g7j + 776i2g8

+ 13 296i3gj 5h + 12 688i3g2j 4h + 36 832i3g3j 3h + 36 504i3g4j 2h

+ 27 768i3g5jh + 9200i3g6h + 2080i4j 4h2 + 20 224i4gj 3h2 + 40 464i4g2j 2h2

+ 46 064i4g3jh2 + 21 856i4g4h2 + 2848i5j 2h3 + 12 192i5gjh3

+ 11 328i5g2h3 + 512i6h4

h′ = 2928ig4j 5 + 1288ig5j 4 + 3296ig6j 3 + 1760ig7j 2 + 936ig8j + 232ig9 + 13 296i2g2j 5h

+ 10 608i2g3j 4h + 28 160i2g4j 3h + 23 840i2g5j 2h + 16 632i2g6jh

+ 5168i2g7h + 12 768i3j 5h2 + 14 336i3gj 4h2 + 50 176i3g2j 3h2
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+ 63 232i3g3j 2h2 + 56 624i3g4jh2 + 21 856i3g5h2 + 13 824i4j 3h3

+ 34 432i4gj 2h3 + 48 928i4g2jh3 + 27 968i4g3h3 + 5824i5jh4 + 8192i5gh4

i ′ = 12 504i3g2j 5 + 7880i3g3j 4 + 19 240i3g4j 3 + 13 232i3g5j 2 + 8224i3g6j + 2184i3g7

+ 528i4j 5h + 4592i4gj 4h + 24 224i4g2j 3h + 36 928i4g3j 2h + 33 728i4g4jh

+ 13 296i4g5h + 1184i5j 3h2 + 8384i5gj 2h2 + 18 880i5g2jh2 + 13 024i5g3h2

+ 640i6jh3 + 1600i6gh3

j ′ = 4308i2j 8 + 5808i2gj 7 + 17 424i2g2j 6 + 11 936i2g3j 5 + 19 164i2g4j 4 + 14 096i2g5j 3

+ 9208i2g6j 2 + 3360i2g7j + 544i2g8 + 11 616i3j 6h + 21 440i3gj 5h

+ 51 024i3g2j 4h + 66 096i3g3j 3h + 56 056i3g4j 2h + 28 864i3g5jh

+ 6400i3g6h + 10 312i4j 4h2 + 35 296i4gj 3h2 + 53 248i4g2j 2h2

+ 45 440i4g3jh2 + 14 080i4g4h2 + 5728i5j 2h3 + 12 544i5gjh3

+ 7168i5g2h3 + 512i6h4.

The initial values of these numbers are g1 = 497 000, h1 = 728 480, i1 = 340 476, j1 =
811 468 and the formula for the number Cl+1 of closed HWs within G3

l+1(3) is

Cl+1 = 92g8
l j

2
l + 48g9

l jl + 8g10
l + 1792ilg

6
l hlj

2
l + 1248ilg

7
l hljl + 384ilg

8
l hl

+ 7568i2
l g

4
l h

2
l j

2
l + 7104i2

l g
5
l h

2
l jl + 3008i2

l g
6
l h

2
l + 10560i3

l g
2
l h

3
l j

2
l

+ 13 440i3
l g

3
l h

3
l jl + 7680i3

l g
4
l h

3
l + 4480i4

l h
4
l j

2
l + 7680i4

l glh
4
l jl

+ 6016i4
l g

2
l h

4
l + 512i5

l h
5
l .

Appendix D. Analysis of recursion relations for HWs on the 6-simplex lattice

Recursion relations for the numbers C1,l , C2 and C3,l of open HW configurations within the
6-simplex of order l have the following form,

C ′
1 = 5544C2

1C4
2 + 1728C3

1C2
2C3 + 2592C3

1C3
2 + 120C4

1C2
3 + 480C4

1C2C3

+ 960C4
1C2

2 + 48C5
1C3 + 216C5

1C2 + 24C6
1 + 25 008C4

2C2
3 + 20 544C5

2C3

+ 6576C6
2 + 11 328C1C

3
2C

2
3 + 15 264C1C

4
2C3 + 8688C1C

5
2 + 4992C2

1C3
2C3

(D.1)

C ′
2 = 94 336C2

2C4
3 + 76 800C3

2C3
3 + 48 160C4

2C2
3 + 23 520C5

2C3 + 6576C1C
5
2 + 17 120C1C

4
2C3

+ 16 672C1C
3
2C

2
3 + 2832C2

1C2
2C

2
3 + 5088C2

1C3
2C3 + 832C3

1C2
2C3 + 3620C2

1C4
2

+ 1232C3
1C3

2 + 144C4
1C2C3 + 324C4

1C2
2 + 64C5

1C2 + 6C6
1 + 16C5

1C3 (D.2)

C ′
3 = 541 568C6

3 + 94 336 C3
2C3

3 + 43 200C4
2C2

3 + 14 448C5
2C3 + 2940C6

2 + 6252C1C
4
2C3

+ 2568C1C
5
2 + 1416C2

1C3
2C3 + 954C2

1C4
2 + 208C3

1C3
2 + 54C4

1C2
2

+ 6C5
1C3 + 12C5

1C2 + C6
1 , (D.3)

where C ′
i = Ci,l+1 and Ci = Ci,l , with the initial values C1,1 = 24, C2,1 = 6, C3,1 = 1.

Introducing new variables

xl = C1,l

C2,l

, yl = C2,l

C3,l

, zl = ln C3,l

6l
− ln 541568

5

(
1

6
− 1

6l

)
,

one can obtain closed set of recursion relations which iterates towards xl, yl → 0, zl →
0.280 204 . . . for l → ∞. On the other hand, from (4.8) it follows that
ln Cl+1

6l+1
= ln yl

6l
+

ln 5580

6l+1
+

1

6l+1
ln

(
1 +

44

31
xl +

22

31
x2

l +
32

93
x3

l +
13

62
x4

l +
2

31
x5

l +
1

93
x6

l

)
,
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whereas from (D.2) one gets

ln C2,l+1

6l+1
= ln C3,l

6l
+ 2

ln yl

6l+1
+

ln 94 336

6l+1
+

1

6l+1
ln

(
1 +

600

737
yl +

1505

2948
y2

l +
521

2948
xly

2
l

+
177

5896
x2

l y
2
l +

735

2948
y3

l +
535

2948
xly

3
l +

159

2948
x2

l y
3
l +

1

1474
x5

l y
4
l +

3

47168
x6

l y
4
l

)
,

and, consequently,

ln ω = lim
l→∞

ln C3,l

6l
+

4

3
lim
l→∞

ln yl

6l
.

Since the numerical analysis shows that ln yl/6l → 0, we finally obtain ω = 2.0550 . . .

To find the leading-order asymptotic behaviour of the number of Hamiltonian walks on
the 6-simplex fractal (C1,l , C2,l , C3,l and Cl), we conduct an analysis similar to that used
in the case of the 5-simplex. However, we can tell right away that C1,l , C2,l and C3,l will
have mutually different asymptotics, since their ratios xl = C1,l

C2,l
and yl = C2,l

C3,l
were found to

be approaching zero for large l. By iterating the recursion relations for xl and yl , one finds
that the ratio of xl and yl quickly approaches a constant equal to 1.521 868 . . . . Keeping
only the terms with the lowest sum of powers in xl and yl in the recursion relations, we find

xl+1 = 12 1042y2
l

47 168 , yl+1 = 2 47 168y2
l

541568 , for l � 1 and the ratio xl+1/yl+1 is indeed 1.521 868 . . . .

From the above equation for yl+1, one can see that

ln yl ≈ 2l ln λ, λ = const = lim
l→∞

ln yl

2l
= 0.9864 . . . . (D.4)

The asymptotic relation (4.11) can be obtained starting with zl = zk +
∑l−1

m=k(zm+1 − zm)

and following a procedure completely analogous to that used in the 5-simplex case.
Relations (4.9) and (4.10) then follow from (4.11), (D.4) and the fact that xl and yl are
proportional in the large l limit. From (4.9)–(4.11) it is apparent that in the limiting case
C1,l � C2,l � C3,l , since λ < 1. Therefore, it holds that Cl+1 ≈ 5580C6

2,l , so finally
ln Cl = 6l ln ω + 3 ∗ 2l ln λ, which is equivalent to (4.12).
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